Search results

Search for "tapping-mode AFM" in Full Text gives 48 result(s) in Beilstein Journal of Nanotechnology.

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • −7 mbar). The thickness of the films was measured using a surface profilometer (Ambios, XP 200). The surface morphology of the as-deposited and the annealed films was acquired using tapping mode AFM (Asylum Research). AFM images were recorded at different places on each sample to confirm the film
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • parameters on AFM tip wear, emphasizing tapping mode AFM. ETD and Ra serve as the evaluation benchmarks. Experimental findings show that free amplitude and scanning frequency significantly affect tip wear and image quality. As amplitude and scanning frequency increase, the wear level also intensifies. The
PDF
Album
Full Research Paper
Published 14 Feb 2024

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • strongly depend on the geometry of the AFM tip [7][8]. For example, the Pt-coated HQ:NSC18/Pt tip (for electrical force modulation AFM probes) and the Cr/Au-coated HQ:NSC16/Cr-Au tip (for tapping mode AFM probes with long AFM cantilever) produced by MikroMasch [9] have estimated nominal tip radii lower
  • . AFM Tips and Calibration Standard Grating Three types of AFM sharp tips were used, namely a Pt-coated tip (HQ:NSC18/Pt, nominal radius < 30 nm for electrical, force modulation AFM; Figure 1a), a Cr/Au-coated tip (HQ:NSC16/Cr-Au, nominal radius < 35 nm for tapping mode AFM; Figure 1b), and an uncoated
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques

  • Berkin Uluutku,
  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2021, 12, 1063–1077, doi:10.3762/bjnano.12.79

Graphical Abstract
  • force–distance curve, where the cantilever position above the sample follows a ramp function. In the case of intermittent-contact methods (e.g., tapping-mode AFM), the cantilever tip oscillates nearly sinusoidally, but since tip–sample contact is intermittent, the sample does not experience purely
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • curves in well-defined spatial intervals, can take several hours to complete. In order to overcome these drawbacks, dynamic scanning methods are a promising alternative to force–distance curves. For example, intermittent-contact (or tapping) mode AFM shows sensitivity to mechanical properties in the
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 1409–1418, doi:10.3762/bjnano.11.125

Graphical Abstract
  • material 1 has not yet peaked in the range of frequency shown in the graph – a similar plot over a wider frequency range is discussed in the Results and Discussion section). Although all of the above phenomena occur similarly within intermittent-contact dynamic AFM methods (such as tapping-mode AFM), the
PDF
Album
Full Research Paper
Published 15 Sep 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • ; intermittent contact; Fourier analysis; tapping-mode AFM; Introduction Conductive atomic force microscopy (C-AFM), a contact-mode technique, has been extensively utilized to investigate local electrical properties of nanoscale systems, such as organic solar cells [1][2][3][4][5][6][7], semiconductors [8][9
PDF
Album
Full Research Paper
Published 13 Mar 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • mechanics [14][26]. The contact area of a perfect sphere can be two orders of magnitude smaller than that of a polyhedron-like NP, as was shown by Vlassov and co-workers [6]. The mobility of the Au NPs was evaluated by means of the power dissipated in tapping-mode AFM, which has previously been shown to be
PDF
Album
Full Research Paper
Published 06 Jan 2020

The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency

  • Arianna Gennari,
  • Julio M. Rios de la Rosa,
  • Erwin Hohn,
  • Maria Pelliccia,
  • Enrique Lallana,
  • Roberto Donno,
  • Annalisa Tirella and
  • Nicola Tirelli

Beilstein J. Nanotechnol. 2019, 10, 2594–2608, doi:10.3762/bjnano.10.250

Graphical Abstract
  • nanoparticle) relative to the total amount of HA in the nanoparticle feed (n = 3). Right: AFM amplitude images of (low-MW chitosan) nanoparticles after dialysis showing the complete removal of unbound HA (absence of “debris” material on the mica surface). Tapping-mode AFM height images of chitosan/HA dried on
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • our LSNT-tip SU8 cantilever with f0 = 328 kHz, k = 15 N/m, Q = 23, planar dimensions of 80 × 20 µm and a thickness of 7 µm. The detection bandwidth is 750 Hz and 50 kHz for the RTESPA and SU8 cantilevers, respectively. Both cantilevers were designed for tapping-mode AFM imaging in air. We want to
  • parasitic resonance peaks in the cantilever tune, which is well known for tapping-mode AFM in low-Q environments such as liquids. As with imaging in fluids, acquiring a thermal tune prior to the mechanical tune helps to find the correct resonance peak to use. The poor mechanical tune caused by the low Q
PDF
Album
Full Research Paper
Published 29 Nov 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • tapping mode AFM with complete time domain correlated visualizations recorded during discharge and recharge cycling. The voltage and capacity of an electrochemical Li/O2 cell were simultaneously monitored and correlated with the evolution of nano- and micro-structured discharge products. In contrast to
  • pattern (1–9) was devised to minimize the impact of tapping mode AFM scanning on the electrochemical deposits. This allowed every AFM line scan to be correlated with the electrochemical changes on the glassy carbon cathode surface. Electrochemical impedance spectroscopy (EIS) curves collected before
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG

  • Imtiaz Ahmad,
  • Floor Derkink,
  • Tim Boulogne,
  • Pantelis Bampoulis,
  • Harold J. W. Zandvliet,
  • Hidayat Ullah Khan,
  • Rahim Jan and
  • E. Stefan Kooij

Beilstein J. Nanotechnol. 2019, 10, 696–705, doi:10.3762/bjnano.10.69

Graphical Abstract
  • centrifuge tube. Characterization techniques Scanning electron microscopy (SEM) imaging of the samples was undertaken with a Zeiss 1550 system (optimum resolution ≈1 nm at 2 kV accelerating voltage). Tapping-mode AFM imaging was carried out with an Agilent 5100 atomic force microscope using HQ:NSC35/Al
PDF
Album
Full Research Paper
Published 13 Mar 2019

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • (Bruker Nano Inc., Santa Barbara, CA) using AFM in tapping mode. Tapping mode AFM was performed in amplitude modulation mode. The height of the cantilever position is constantly adjusted (via a feedback loop) to keep constant the ratio of the tip vibrational amplitude in contact with the sample surface to
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

A differential Hall effect measurement method with sub-nanometre resolution for active dopant concentration profiling in ultrathin doped Si1−xGex and Si layers

  • Richard Daubriac,
  • Emmanuel Scheid,
  • Hiba Rizk,
  • Richard Monflier,
  • Sylvain Joblot,
  • Rémi Beneyton,
  • Pablo Acosta Alba,
  • Sébastien Kerdilès and
  • Filadelfo Cristiano

Beilstein J. Nanotechnol. 2018, 9, 1926–1939, doi:10.3762/bjnano.9.184

Graphical Abstract
  • good agreement with previous results obtained by our research group [26]. Concerning the surface roughness, tapping mode AFM analysis provided arithmetic averages Ra of about 1.2 Å (Figure S2, Supporting Information File 1). However, in view of its application for DHE experiments, it is necessary to
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • , respectively, the assignment of the individual phases to their chemical composition is further supported. Additionally, the occurrence of a secondary phase of AlPO4 has been previously observed [1][4]. No changes based on the different composition in phase images of tapping-mode AFM, nor in peak-force tapping
PDF
Album
Full Research Paper
Published 28 May 2018
Graphical Abstract
  • OTS on Si(111) Particle lithography with an immersion step was used to prepare nanoholes within a film of OTS. A topographic view of the nanoholes is shown in Figure 2a, with the simultaneously acquired phase image (Figure 2b).The ex situ images were acquired with tapping-mode AFM in air. The
PDF
Album
Supp Info
Full Research Paper
Published 17 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • ., Manchester, UK), UV–vis absorption spectra (Lambda 750 UV/VIS/NIR spectrometer, PerkinElmer, Inc., Waltham, MA, USA) and SPFM. In the SPFM, a DC or AC bias is applied to a tapping mode AFM tip, generating an electrostatic attractive force (polarization force) between the biased tip and the polarized charge
PDF
Album
Full Research Paper
Published 11 Apr 2018

Combined pulsed laser deposition and non-contact atomic force microscopy system for studies of insulator metal oxide thin films

  • Daiki Katsube,
  • Hayato Yamashita,
  • Satoshi Abo and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2018, 9, 686–692, doi:10.3762/bjnano.9.63

Graphical Abstract
  • rate fp = 2.0 Hz on a LaAlO3(100) substrate. The sample was then taken out of vacuum, and its surface was measured with tapping mode AFM in air as shown in Figure 3a. It was found that an atomically flat area did not exist on the surface, instead grain structures appeared on the surface. A peak for
  • view of the combined PLD/AFM system. STM measurements can also be performed. LEED and RHEED apparatuses are also installed. The AFM (and also STM) is operated at room temperature in UHV. (a) Sample holder and (b) holder stocker used in the PLD camber. (a–d) Tapping mode AFM images of anatase-TiO2(001
PDF
Album
Full Research Paper
Published 21 Feb 2018

Material discrimination and mixture ratio estimation in nanocomposites via harmonic atomic force microscopy

  • Weijie Zhang,
  • Yuhang Chen,
  • Xicheng Xia and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2017, 8, 2771–2780, doi:10.3762/bjnano.8.276

Graphical Abstract
  • tapping mode AFM, the contact force and contact time per oscillation period dominate the harmonic signals [27]. These two quantities are assumed to be related to the amplitude set-point. It is well known that the peak force in tapping mode scales with the amplitude feedback settings [28]. However, the
PDF
Album
Full Research Paper
Published 21 Dec 2017

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • surface, containing multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we deliver analytical closed
  • imaging method. Keywords: atomic force microscopy; harmonic functions; tapping-mode AFM; viscoelasticity; Introduction Several current applications demand physical understanding of soft dissipative materials at the nanoscale [1][2][3][4][5]. This type of materials, such as polymers, biological cells and
  • damage induced by constant tip drag. Additionally, these methods are prone to significant tip wear and contamination which could make quantitative characterization unreliable due to constant changes in tip geometry. Dynamic methods have been designed to overcome the above issues, whereby tapping-mode AFM
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

Application of visible-light photosensitization to form alkyl-radical-derived thin films on gold

  • Rashanique D. Quarels,
  • Xianglin Zhai,
  • Neepa Kuruppu,
  • Jenny K. Hedlund,
  • Ashley A. Ellsworth,
  • Amy V. Walker,
  • Jayne C. Garno and
  • Justin R. Ragains

Beilstein J. Nanotechnol. 2017, 8, 1863–1877, doi:10.3762/bjnano.8.187

Graphical Abstract
  • sample in ambient conditions for six months, using tapping mode AFM (Figure 5). The arrangement and locations of nanopores can still be resolved with AFM topographs (Figure 5a). The surface coverage of the Au–NHBoc film measured 83%, which is consistent with the value measured from the freshly prepared
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2017

A review of demodulation techniques for amplitude-modulation atomic force microscopy

  • Michael G. Ruppert,
  • David M. Harcombe,
  • Michael R. P. Ragazzon,
  • S. O. Reza Moheimani and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2017, 8, 1407–1426, doi:10.3762/bjnano.8.142

Graphical Abstract
  • amplitude estimate as a function of the tracking bandwidth. The experimental analysis is concluded by high-speed constant-height tapping-mode AFM experiments which highlight the case where the demodulator is the bandwidth bottleneck in the z-axis feedback loop. Fundamentals of amplitude modulation and
  • RMS-to-DC converter, the output needs to be scaled by to obtain the amplitude as evident from Equation 15. This method has increasing latency for decreasing tracking bandwidth. Mean absolute deviation In tapping-mode AFM, RMS-to-DC conversion was typically performed using a precision rectifier
  • output scaling factor of π/2. The functional block diagram of this implementation is shown in Figure 7b. Peak hold and peak detector method The peak hold technique [36][38] was specifically developed for high-speed tapping-mode AFM, enabling video-rate imaging of Myosin V [15]. The analog implementation
PDF
Album
Review
Published 10 Jul 2017

Scaling law to determine peak forces in tapping-mode AFM experiments on finite elastic soft matter systems

  • Horacio V. Guzman

Beilstein J. Nanotechnol. 2017, 8, 968–974, doi:10.3762/bjnano.8.98

Graphical Abstract
  • operating conditions to image soft matter with high spatial resolution in tapping-mode AFM. Keywords: AFM in liquid; AFM theory; bidimensional elastic models; multivariate regression; neuronal networks; operational AFM parameters; parametrical equation; peak forces; soft matter; Introduction Amplitude
  • [28][29]. Multivariate regression method to find a parametrical equation for the peak forces in tapping mode AFM on finite elastic soft matter systems Asymptotic approximation methods have been used to deduce parametrical equations of physical quantities in dynamic systems. In amplitude-modulation AFM
  • parametrical equation proposed here extends the quantitative understanding of exerted forces by the tip while imaging soft and elastic materials in liquid environment. It is useful to avoid sample damage while imaging soft materials in liquid with tapping-mode AFM by providing a multi-parametric
PDF
Album
Full Research Paper
Published 02 May 2017

Surface roughness rather than surface chemistry essentially affects insect adhesion

  • Matt W. England,
  • Tomoya Sato,
  • Makoto Yagihashi,
  • Atsushi Hozumi,
  • Stanislav N. Gorb and
  • Elena V. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1471–1479, doi:10.3762/bjnano.7.139

Graphical Abstract
  • (Soot-TMOS-FAS17Cl) were estimated from cross-sectional images acquired by a scanning electron microscope (SEM, Phenom Pro Scanning Electron Microscope, Phenom World). The surface morphologies of the samples were either observed using the same SEM system or by atomic force microscope in a tapping mode
  • (AFM, XE-100, Park Systems), with a Si probe (910M-NCHR; spring constant of 42 N/m and response frequency of 330 kHz, Park Systems). The surface roughness (root-mean square roughness, Rrms) were estimated using two separate techniques due to the huge disparity in the size of surface textures on smooth
PDF
Album
Full Research Paper
Published 18 Oct 2016
Other Beilstein-Institut Open Science Activities